Signal Separation Using Re-weighted and Adaptive Morphological Component Analysis
نویسندگان
چکیده
Morphological component analysis (MCA) for signal separation decomposes a signal into a superposition of morphological subcomponents, each of which is approximately sparse in a certain dictionary. Some of the dictionaries can also be modified to make them adaptive to local structure in images. We show that signal separation performance can be improved over the previous MCA approaches by replacing L1 norm optimization with “weighted” L1 norm optimization and replacing their dictionary adaptation with regularized dictionary adaptation. The weight on an atom for sparse coding is commonly derived from the corresponding coefficient’s value. In contrast, the weight of an atom in a dictionary for signal separation is derived from the mutual coherence between the atom and the atoms in the other dictionaries. The proposed solution for regularized dictionary adaptation is an extension of the K-SVD method, where the dictionary and “weighted” sparse coefficients are estimated simultaneously. We present a series of experiments demonstrating the significant performance improvement of the proposed algorithm over the previous approaches for signal separation.
منابع مشابه
A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملRobust Adaptive Beamforming Based on Domain Weighted Pca
A novel technique for robust adaptive beamforming (ABF) is proposed. The technique, referred to as Domain−Weighted PCA (DW−PCA), is founded on a basic paradigm shift from one of noise cancellation to one of signal separation. It uses the singular value decomposition (SVD) to perform second order blind signal separation after applying a simple transformation to the data. The transformation is de...
متن کاملSelf-Adaptive Morphological Filter for Noise Reduction of Partial Discharge Signals
Partial Discharge assessment in the insulation of high voltage equipment is one of the most popular approaches for prevention of the insulation breakdown. In the procedure of thisassessment, noise reduction of partial discharge signals to get the original PD signal for accurate evaluation is inevitable. This denoising process shall be carried out such a way that the main features of the p...
متن کاملAdaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform
In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014